月度归档:2019年09月

洛谷 P3379 【模板】最近公共祖先(LCA)重写

朴素算法:洛谷70分,O2 80分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include<iostream>
#include<vector>
using namespace std;
int n, m, s;
vector<int> edges[500005];
int father[500005],depth[500005];
void dfs(int node, int fath) {
    father[node] = fath;
    depth[node] = depth[fath] + 1;
    for (int i = 0; i < edges[node].size(); i++) {
        if (edges[node][i] == fath)continue;
        dfs(edges[node][i], node);
    }
}
int query(int a, int b) {
    while (a != b) {
        if (depth[a] >= depth[b])a = father[a];
        else b = father[b];
    }
    return a;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n >> m >> s;
    for (int i = 1; i <= n - 1; i++) {
        int x, y;
        cin >> x >> y;
        edges[x].push_back(y);
        edges[y].push_back(x);
    }
    dfs(s, s);
    for (int i = 1; i <= m; i++) {
        int a, b;
        cin >> a >> b;
        cout << query(a, b) << "\n";
    }
}

倍增:洛谷80分,O2 100分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include<iostream>
#include<vector>
#include<algorithm>
#define MAXLOG 20
using namespace std;
int n, m, s;
vector<int> edges[500005];
int depth[500005];
int ancestor[500005][MAXLOG+2];
void dfs(int node, int fath) {
    ancestor[node][0] = fath;
    depth[node] = depth[fath] + 1;
    for (int i = 1; i <= MAXLOG; i++)ancestor[node][i] = ancestor[ancestor[node][i - 1]][i - 1];
    for (int i = 0; i < edges[node].size(); i++) {
        if (edges[node][i] == fath)continue;
        dfs(edges[node][i], node);
    }
}
int query(int a, int b) {
    if (depth[b] > depth[a])swap(a, b);
    for (int i = MAXLOG; ~i; i--)if (depth[ancestor[a][i]] >= depth[b])a = ancestor[a][i];
    if (a == b)return a;
    for (int i = MAXLOG; ~i; i--) if(ancestor[a][i]!=ancestor[b][i]){
        a = ancestor[a][i];
        b = ancestor[b][i];
    }
    return ancestor[a][0];
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n >> m >> s;
    for (int i = 1; i <= n - 1; i++) {
        int x, y;
        cin >> x >> y;
        edges[x].push_back(y);
        edges[y].push_back(x);
    }
    dfs(s, s);
    for (int i = 1; i <= m; i++) {
        int a, b;
        cin >> a >> b;
        cout << query(a, b) << "\n";
    }
}

Tarjan:洛谷70分,O2 100分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;
int n, m, s;
vector<int> edges[500005],askPair[500005];
bool visited[500005];
int father[500005];
inline int _find(int node) {
    if (father[node]==-1)return node;
    return father[node] = _find(father[node]);
}
inline void _union(int x, int y) {
    if(_find(x)!=_find(y))father[_find(x)] = y;
}
struct ask {
    int u, v;
    int ans;
}asks[500005];
inline int checkV(int id,int node) {
    if (asks[id].u != node)return asks[id].u;
    return asks[id].v;
}
void dfs(int node,int fath) {
    for (int i = 0; i < edges[node].size(); i++) {
        if (edges[node][i] == fath)continue;
        dfs(edges[node][i],node);
        _union(edges[node][i], node);
    }
    visited[node] = true;
    for (int i = 0; i < askPair[node].size(); i++) {
        int v = checkV(askPair[node][i], node);
        if (visited[v])asks[askPair[node][i]].ans = _find(v);
    }
}
int main() {
    memset(father, -1, sizeof(father));
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n >> m >> s;
    for (int i = 1; i <= n - 1; i++) {
        int x, y;
        cin >> x >> y;
        edges[x].push_back(y);
        edges[y].push_back(x);
    }
    for (int i = 1; i <= m; i++) {
        cin >> asks[i].u >> asks[i].v;
        askPair[asks[i].u].push_back(i);
        askPair[asks[i].v].push_back(i);
    }
    dfs(s,s);
    for (int i = 1; i <= m; i++)cout << asks[i].ans << "\n";
}

计蒜客 Random Access Iterator

原题链接:https://nanti.jisuanke.com/t/41392
竟然做出来一道这么复杂的概率+DFS+逆元题,开心到爆炸,特此发题解一篇^v^

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#define MOD 1000000007
#define ll long long
using namespace std;
int n;
int MDep;
vector<int> edges[1000005];
bool visited[1000005];
ll quickpow(ll a, ll b) {
    if (b == 0)return 1;
    ll re = quickpow(a, b / 2) % MOD;
    re = (re * re) % MOD;
    if (b % 2 == 1)re *= a % MOD;
    return re % MOD;
}
inline ll inv(ll x) {
    return quickpow(x, MOD - 2) % MOD;
}
inline ll chance1(ll TotNode) {
    ll ch = (inv(TotNode)) % MOD;
    return ch;
}
inline ll chance2(ll onceCh,ll TotNode) {
    ll onceNonch = (1ll-onceCh+MOD) % MOD;
    ll nonch = quickpow(onceNonch, TotNode);
    ll fin = (1ll - nonch + MOD) % MOD;
    return fin;
}
int dfsMaxDep(int node) {
    int maxDep = 1;
    bool hasChild = false;
    visited[node] = true;
    for (int i = 0; i < edges[node].size(); i++) {
        if (visited[edges[node][i]])continue;
        hasChild = true;
        maxDep = max(maxDep, dfsMaxDep(edges[node][i]) + 1);
    }
    return maxDep;
}
ll dfsChance(int depth,int node){
    if (depth == MDep)return 1;
    ll ch = 0,sCh=chance1(node==1?edges[node].size(): edges[node].size()-1);
    visited[node] = true;
    for (int i = 0; i < edges[node].size(); i++) {
        if (visited[edges[node][i]])continue;
        ll CurCH = dfsChance(depth + 1, edges[node][i]);
        if (CurCH) {
            ch += (CurCH * sCh) % MOD;
            ch %= MOD;
        }
    }
    return chance2(ch, node == 1 ? edges[node].size() : edges[node].size() - 1);
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin >> n;
    for (int i = 1; i < n; i++) {
        int u, v;
        cin >> u >> v;
        edges[u].push_back(v);
        edges[v].push_back(u);
    }
    MDep = dfsMaxDep(1);
    memset(visited, false, sizeof(visited));
    ll ch = dfsChance(1, 1);
    cout << ch;
}