2017-07-14更新放苹果问题:参考http://www.cnblogs.com/wxgblogs/p/5742618.html
放苹果
设函数f(M,N)为把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放的分法的数量。(5,1,1和1,5,1 是同一种分法。)
求该函数的递推式
解答:
f(m,n)={
m==0||n==1 -> 1;
m
m>=n -> f(m-n,n) + f(m,n-1); //分成两种情况,f(m-n,n)是没有空盘子:把n个盘子里每个都装上一个苹果,剩下的m-n个苹果再装到n个盘子里;f(m,n-1)是有空盘子,把那一个不装扔出来就好。
}
简单的整数划分问题
将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。正整数n 的这种表示称为正整数n 的划分。正整数n 的不同的划分个数称为正整数n 的划分数。设函数f(m,n)为将整数m划分为每个数最大为n的划分数。
求该函数的递推式
解答:
f(m,n)={
m==1|| n==1 -> 1; //m==1时,只能分成1个1;n==1时,只能分成m个1。
m
m==n -> 1+f(m,n-1); //当m==n时,因为整数m可以自己算作一个划分,那么就要把n-1传递下去
m>n -> f(m-n,n)+f(m,n-1); //m>n时,可以在当前状态下分出去n或者不分出去n,对应两个f();
}
分解因数
给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * … * an,并且1 < a1 <= a2 <= a3 <= ... <= an,问这样的分解的种数有多少。注意a = a也是一种分解。
解答:设函数f(m,n)为将整数m划分成小于等于整数n的划分数。
f(m,n)={
n==1 -> 0; //划到1就不能再往下分了
m==1 -> 1;
m%n==0 -> f(m/n,n) + f(m,n-1); //当m可以整除n的时候,可以除完了划分下去,也可以不除
m%n!=0 -> f(m,n-1); //只能不除
}
月度归档:2017年02月
Openjudge Boolean Expressions
Boolean Expressions
查看 提交 统计 提问
总时间限制: 1000ms 内存限制: 65536kB
描述
The objective of the program you are going to produce is to evaluate boolean expressions as the one shown next:
Expression: ( V | V ) & F & ( F | V )
where V is for True, and F is for False. The expressions may include the following operators: ! for not , & for and, | for or , the use of parenthesis for operations grouping is also allowed.
To perform the evaluation of an expression, it will be considered the priority of the operators, the not having the highest, and the or the lowest. The program must yield V or F , as the result for each expression in the input file.
输入
The expressions are of a variable length, although will never exceed 100 symbols. Symbols may be separated by any number of spaces or no spaces at all, therefore, the total length of an expression, as a number of characters, is unknown.
The number of expressions in the input file is variable and will never be greater than 20. Each expression is presented in a new line, as shown below.
输出
For each test expression, print “Expression ” followed by its sequence number, “: “, and the resulting value of the corresponding test expression. Separate the output for consecutive test expressions with a new line.
Use the same format as that shown in the sample output shown below.
样例输入
( V | V ) & F & ( F| V)
!V | V & V & !F & (F | V ) & (!F | F | !V & V)
(F&F|V|!V&!F&!(F|F&V))
样例输出
Expression 1: F
Expression 2: V
Expression 3: V
来源
México and Central America 2004
这题递归写的真心累啊!
Openjudge 2的幂次方表示
2的幂次方表示
查看 提交 统计 提问
总时间限制: 1000ms 内存限制: 65536kB
描述
任何一个正整数都可以用2的幂次方表示。例如:
137=27+23+20
同时约定方次用括号来表示,即ab可表示为a(b)。由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:7=22+2+20(21用2表示)
3=2+20
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=210+28+25+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入
一个正整数n(n≤20000)。
输出
一行,符合约定的n的0,2表示(在表示中不能有空格)。
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
来源
NOIP1998复赛 普及组 第一题
参考http://blog.csdn.net/u011954296/article/details/51029600写成代码,不胜感激!
继续阅读
Openjudge全排列题解
全排列
总时间限制: 1000ms 内存限制: 65536kB
描述
给定一个由不同的小写字母组成的字符串,输出这个字符串的所有全排列。 我们假设对于小写字母有’a’ < ‘b’ < … < ‘y’ < ‘z’,而且给定的字符串中的字母已经按照从小到大的顺序排列。
输入
输入只有一行,是一个由不同的小写字母组成的字符串,已知字符串的长度在1到6之间。
输出
输出这个字符串的所有排列方式,每行一个排列。要求字母序比较小的排列在前面。字母序如下定义:
已知S = s1s2…sk , T = t1t2…tk,则S < T 等价于,存在p (1 <= p <= k),使得
s1 = t1, s2 = t2, …, sp – 1 = tp – 1, sp < tp成立。
样例输入
abc
样例输出
abc
acb
bac
bca
cab
cba